TECHNION Israel Institute of Technology biochar from olive mill solid waste for the removal of heavy metals and calcium from water

Hassan Azaizeh^{a,b}, Samya Abdelhadi, Hussein Jradat, Giora Rytwo and Carlos G. Dosoretz

^a Institute of Applied Research, The Galilee Society P.O.Box 437, Shefa-Amr 20200, Israel.

^bTel Hai College, Upper Galilee 12208, Israel. <u>hazaizeh@yahoo.com</u>

7th International Conference on Sustainable Solid Waste Management, June 26-29, 2019, Heraklion, Greece

Outlines

Introduction: Heavy metals contamination

- Olive mill solid wastes (OMSW).
- Objectives
- Results
- Conclusions

Heavy Metals (HM)

- HMs are produced from different sources including mining, industry and even from fertilizers...
- HMs contaminate the Human food chain and the ground water and cause toxic effects.

Activated Carbon (AC) - the most commonly used and the most effective adsorbent

- AC high cost
- Alternative: Low cost waste biochar economical solu

What about Olive Mill Solid Waste (OMSW)???

Olive mill products:

1. Three-phase process

Two-phase system

OMSW biomass

- What it contains?
- Agriculture waste with very low economical value and it is an environmental pollutant.
- Uses: compost, producing animal feed and as energy source to heat houses (burning).

Structure of lignocellulose (Anwar et al., 2014)

- Producing biochar from OMSW of <u>different cultivars (Picual vs</u> <u>Souri) & processes (two- vs three-phases)</u> using pyrolysis process at 350 & 450°C (5 hours).
- Using physical activation to produce Activated Biochar (AB).
- Testing the biochar and AB as Adsorbent (biofilter) to HM using

Scheme

YIELD

35.6% - 23%

The yield (%) values of the **Picual** two and three phases biochar obtained at **350°C or 450°C** pyrolysis for 5h. Data is mean of 3 replicates <u>+</u> SD.

Surface area (Biochar): Langmuir model and BET

The mean-surface area of biochar produced at 450°C of the different OMSW types using Langmuir (MB) and BET method. Data is mean of 3 replicates <u>+</u> SD.

SA _{BET} (m²/g)	SA _{MB} (m²/g)	Туре @450⁰С
1.0 + 0.005	1.65 <u>+</u> 0.14	Picual Two-phase
3.5 + 0.0175	8.12 <u>+</u> 0.85	Picual Three-phase
1.2 + 0.006	3.48 <u>+</u> 0.01	Souri Two-phase
5.3 + 0.0265	4.30 <u>+</u> 1.22	Souri Three-phase
1100 + 5.5	-	Commercial
		Activated Carbon

The removal (%) values of the six heavy metals using the **Picual two-phase (a) Whole @350°C, (b) Whole @450°C, (c) Cellulose @350°C, and (d) Cellulose @450°C** biochar after incubation for 0, 5, 15, 30, 60 min. Data is mean of 3 replicates <u>+</u> SD.

The remaining concentration (μ M) of the six heavy metals using the **Cellulose of Picual of two phases** biochar at 350°C after incubation for **0**, **5**, **15**, **30**, **60** min. Data is mean of 3 replicates \pm SD.

The remaining concentration (μ M) of the six heavy metals using the **Picual two phases biochar** obtained at 350°C or 450°C separated to Cellulose and Kernel compared to whole after incubation **for 5 min.** Data is mean of 3 replicates <u>+</u> SD.

The remaining concentration (μ M) of the six heavy metals using the **Souri two phases biochar** obtained at 350°C or 450°C separated to Cellulose and Kernel compared to whole after incubation **for 5 min.** Data is mean of 3 replicates <u>+</u> SD.

The remaining concentration (μ M) of the six heavy metals using the **Commercial Activated Carbon** (**CAC**) after incubation for 5, 15, 30, 60 min. Data is mean of 3 replicates <u>+</u> SD.

Why Se was not removed from solution??

Zeta potential of biochar is negative

(1)

(2)

(3)

(4)

0

Functional groups

Summary of the **FTIR** analysis for functional groups associated with the different wavelength ranges between 800-1800 cm⁻¹ obtained for the different biochar samples produced at 350°C (left) or at 450 °C (right).

Summary of the functional groups of the different OMSW types associated with the different wavelength ranges between 800-1800 cm⁻¹ based on FTIR analysis

#	Wavenumb er (cm ⁻¹)	Assignment (Functional groups)	Reference
1	~1740	Unconjugated $C = O$ in hemicellulose	
2	~1670	Conjugated $C = O$	
3	~1580	Aromatic skeletal vibration in lignin	
4	~1440	C–H deformation in lignin and carbohydrates	(Danday and Ditman
5	~1370	C-H deformation in cellulose and	(Panuey and Pitman,
		hemicellulose	2003; Naumann et
C	~1250	Syringyl/guiacyl ring breathing and C-O	al., 2007)
U		stretch in lignin and xylan	
7	.1170	C–O–C vibration in cellulose and	
	~1170	hemicellulose	
8	~1120	Aromatic skeletal and C–O stretch	
0		C-O stretch in cellulose and	(Pandey and Pitman,
9	~1040	hemicellulose	2003)
10	~890	C-H deformation in cellulose	
11	~830 ~760	Arvl C_H and/or arvl C_O groups	(Baldock and
	050, ~700	Aryr C-rr and/or aryr C-O groups	Smernik, 2002)

OMSW Activation

(Physically Activated Biochar):

The Yield (%) and the mean surface area of biochar produced at 350°C of different whole OMSW types and the porosity using BET model after physical activation. Data is mean of 3 replicates ± SD.

Porosity	SA _{BET} (m²/g) after	Yield	Type: pyrolyzed at
(%)	activation	(%)	350ºC for 5h
87.4	501.5 <u>+</u> 2.50*	59.7	Picual Two-phases
91.53	304.46 <u>+</u> 1.52*	58.6	Picual Three-phases
88.34	213.27 <u>+</u> 1.06*,**	70.4	Souri Two-phases
91.05	172.6 <u>+</u> 0.86*	63.3	Souri Three-phases

Conclusio

- Yes yield of the produced biochar was dependent on pyrolysis temperature.
- The removal capacity for HMs dependent on the cultivar and processing type.
- The best HM removal was by using Picual-cellulose of the twophase obtained at 350°C.
- There was no correlation between surface area and the removal capacity of the different biochar types.
- Using physical activation caused hundreds of times increase in surface area but the HM removal capacity was not affected.

Conclusio

- FTIR analysis indicated that more significant absorption bands for the two-phase samples, that are considerably smaller in the three-phase. Peaks 5 (C-H) and 9 (C-O).
- The main functional groups in metals removal are related to remains of cellulose in the produced biochar.
- Zeta potential explains why the produced biochar and AB didn't remove Se from the solution.

Thank you for your attention

